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Abstract

In 2019, the US Center for Disease Control and Prevention provided vital statistics related to drug overdoses in the United State1. 
They concluded that in the USA the number of deaths at almost 72,000 was due to 66.6% of opioid overdoses. In fact, the rate is 
alarming and increasing yearly. To make 2021 even more scary is the daunting effect on increased drug usage due to COVID 19 as 
a pandemic, albeit the new vaccines. Specifically, in 2020, the death rate from opioid overdoses rose to 13% nationally and in some 
sates 30%. The common neuromodulating aspects of neurotransmission, and its disruption via chronic exposure of drugs and be-
havioral addictions, requires further intense research focus on developing novel strategies to combat these unwanted genetic and 
epigenic infractions as accomplished with heroin addiction by our group. The take home message is the plausible acceptance of the 
well-established evidence for hypodopaminergia, a blunted reward processing system, reduced resting state functional connectiv-
ity, genetic antecedents, anti- reward symptomatology, poor compliance with MAT, and generalized RDS. With this evidence it is 
conceivable that pursuit through intensive future research should involve an approach that incorporates “dopamine homeostasis”. 
This required paradigm shift may consist of many beneficial modalities including but not limited to: exercise, pro-dopamine regula-
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tion, nutrigenomics, cognitive behavioral therapy, hedonic hot spot targets brain, rTMRS, deep brain stimulation, diet, genetic edits, 
genetic guided therapeutics, epigenetic repair, amongst others. It is our opinion that nutrigenomics may assist the millions of people 
of getting out of a” hypodopaminergic ditch” WC 250.
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Opinion

This perspective is proposing a unique combination coupling 
the compound Glutathione with known Enkephalinase Inhibi-
tors as well as enkephalin and dopamine releasing compounds 
from a group of said inhibitors including but limited to DL-Phe-
nylalanine to help detoxify and treat individuals diagnosed with 
Reward Deficiency Syndrome (RDS) utilizing a newly validated 
RDS index as well as genetic testing [1-5]. 

The preferred method of delivery is intravenous therapy or 
aqua-power imprints of the molecular structure including but 
not limited to NAD/NADH, glutathione and Dl-Phenylalanine [6]. 
It is also a preferred that a genetic addiction risk severity testing 
system will be utilized to determine a precision based oral for-
mulae utilizing DNA for guided precision therapy [7]. It is theo-
rized that coupling of outcome results following a DNA test with 
a minimum of four genes and four alleles [8]. 

This novel testing system we call Genetic Addiction Risk Se-
verity (GARS®) will be followed up with additional steps to cus-
tomize or semi-customize preferred formulae to be utilized to 
not only detoxify but to treat RDS victims [9]. It is anticipated 
that the novel utilization of a genetic risk testing system to pre-
vent relapse in people in recovery or prior to entering a pain 
clinic to categorize ones’ risk for subsequent opioid use disorder 
(OUD) is a required to reduce the overall death rates [10]. 

We hereby believe that this important disruptive industrial 
technology along precision epigenetic repair of infractions 
within the brain reward circuit due either to nature (genetic) or 
nurture(epigenetic) may eventually become a standard of care 
to treat RDS [11]. It is well established that in both food- and 
drug-addicted individuals, there is dopamine resistance due to 
an association with the DRD2 gene A1 allele among other dopa-
mine related genetic polymorphisms [12]. Evidence is emerging 

whereby the potential of utilizing a natural, non-addicting, safe, pu-
tative D2 agonist may find its place in recovery from reward defi-
ciency syndrome (RDS) in patients addicted to psychoactive chem-
icals [13]. Utilizing quantitative electroencephalography (qEEG) as 
an imaging tool, we have shown the impact of a KB220 variant as 
a putative activator of the mesolimbic system [14,15]. We demon-
strated for the first time that its intravenous administration reduc-
es or “normalizes” aberrant electrophysiological parameters of the 
reward circuitry site [16]. For that published pilot study, we report 
that the qEEG’s of an alcoholic and a heroin abuser with existing 
abnormalities (i.e., widespread theta and widespread alpha activi-
ty, respectively) during protracted abstinence are significantly nor-
malized by the administration of one intravenous dose of KB220 
[2]. Specifically, both patients were genotyped for neurotransmit-
ter reward genes to determine to what extent they carry putative 
dopaminergic risk alleles that may predispose them for alcohol or 
heroin dependence, respectively. The genes tested included the do-
pamine transporter (DAT1, locus symbol SLC6A3), dopamine D4 
receptor exon 3 VNTR (DRD4), DRD2 TaqIA (rs1800497), COMT 
val158 met SNP (rs4680), monoamine oxidase A upstream VNTR 
(MAOA-uVNTR), and serotonin transporter-linked polymorphic re-
gion (5HTTLPR, locus symbol SLC6A4) [2,17,18].

We emphasize that these are many people that possess a high 
GARS at least in America [20], and it would be unlikely for all indi-
viduals to carry all putative risk alleles. Based on previous research 
and our qEEG studies), we cautiously suggest that long-term gentle 
activation of dopaminergic receptors (ie, DRD2 receptors) will re-
sult in their proliferation and lead to enhanced “dopamine sensitiv-
ity” and an increased sense of happiness, particularly in carriers of 
the DRD2 A1 allele [21,22].

This is supported by a clinical trial on KB220 variant using in-
travenous administration in > 600 alcoholic patients, resulting in 
significant reductions in RDS behaviors. It is also confirmed by the 
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expanded oral study on KB220 variant [23]. Future studies must 
await both functional magnetic resonance imaging and positron 
emission tomography scanning to determine the acute and chronic 
effects of oral KB220 on numbers of D2 receptors and direct inter-
action at the nucleus accumbens. Confirmation of these results in 
large, population-based, case-controlled experiments is necessary. 
These studies would provide important information that could ul-
timately lead to significant improvement in recovery for those with 

Figure 1: Illustrates the interaction of at least seven major neurotransmitter-pathways involved in the Brain Reward Cascade (BRC). In 
the hypothalamus, environmental stimulation causes the release of serotonin, which in turn via, for example, 5HT-2a receptors activate 
(green equal sign) the subsequent release of opioid peptides from opioid peptide neurons, also in the hypothalamus. Then, in turn, the 
opioid peptides having two distinct effects, possibly via two different opioid receptors. One that inhibits (red hash sign) through the mu-
opioid receptor (possibly via enkephalin) and projecting to the Substania Nigra to GABAA neurons. Another stimulates (green equal sign) 
Cannabinoid neurons (e.g., Anandamide and 2-archydonoglcerol) through Beta –Endorphin linked delta receptors, which in turn inhibits 
GABAA neurons at the substania nigra. Cannabinoids primarily 2-archydonoglcerol, when activated, can also indirectly disinhibit (red 
hash sign) GABAA neurons in the Substania Nigra through activation of G1/0 coupled to CB1 receptors. Glutamate neurons located in 
the Dorsal Raphe Nuclei (DRN) can indirectly disinhibit GABAA neurons in the Substania Nigra through activation of GLU M3 receptors 
(red hash sign). GABAA neurons, when stimulated, will, in turn, powerfully (red hash signs) inhibit VTA glutaminergic drive via GABAB 
3 neurons. It is also possible that stimulation of ACH neurons that at the Nucleus Accumbens ACH can stimulate both muscarinic (red 
hash) or Nicotinic (green hash). Finally, Glutamate neurons in the VTA will project to dopamine neurons through NMDA receptors (green 
equal sign) to preferentially release dopamine at the Nucleus Accumbens (NAc) shown as a bullseye indicates a euphoria, or “wanting” 
response. The result is that when Dopamine release is low (unhappiness: Endorphin Deficiency). At the same time, general (usual) hap-

piness depends on the dopamine homeostatic tonic set point (see figure 2). With Permission Blum., et al. [25].

RDS and dopamine deficiency as a result of a multiple neurotrans-
mitter signal transduction infractions in the brain reward cascade 
[24-26].

Moreover, the powerful effects of KB220 as evidenced by more 
recent neuroimaging studies have clearly showed the importance 
of Pro-dopamine regulation along the Brain Reward Cascade (BRC) 
(see figure 1). 
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In the midst, of the COVID 19 pandemic, there is also a global 
addiction crisis worldwide [27]. The devastation and deaths due to 
drug overdose, being highest in the United States is indeed a global 
issue requiring novel approaches [28]. The incorporation of opi-
oids to treat the same problem with powerful opioids seems too 
simplified, albeit quite successful in reducing harm [29], but locks 
people in unwanted addiction [30]. Our group has been cognizant 
that while one primary benefit is to reduce harm, there is a paucity 
f studies providing evidence to address the root cause of RDS hy-
podopaminergia [31]. 

An additional approach is to utilize the narcotic antagonist Na-
ltrexone especially implants [32], to induce “psychological extinc-
tion” via blocking D2 receptors [33]. The latter approach seems to 
be more acceptable, relative to treating opioids with opioids such 
as methadone and buprenorphine based on genotype [34], but 
compliance is a major issue due to long-term antireward properties 
[35]. The approved drug acamprosate, a NMDA receptor antagonist 

and a positive allosteric modulator of GABAA receptors disturbs do-
paminergic signaling resulting in chronic hypodopaminergia [36]. 
Understanding the above premise and the further emerging ac-
ceptance of the umbrella term Reward Deficiency Syndrome (RDS) 
first coined by Blum in 1995, facilitates the co-occurrence mecha-
nism hypothesis for drug and non -addictive behaviors [37]. 

Understanding the common neuromodulating aspects of neuro-
transmission and its disruption via chronic exposure of drugs and 
behavioral addictions, requires further intense research focus on 
developing novel strategies to combat these unwanted genetic and 
epigenic infractions [38] as accomplished with heroin addiction 
(see figure 2). 

Conclusion
The take home message is the plausible acceptance of the well-

established evidence for hypodopaminergia [39], a blunted reward 
processing system [40], reduced resting state functional connec-

Figure 2: The Reward Deficiency Syndrome Identification and Treatment model.

tivity [41], genetic antecedents [42], anti- reward symptomatology 
[43], poor compliance with MAT [44], and generalized RDS [45]. 
With this evidence it is conceivable that pursuit through intensive 

future research should involve an approach that incorporates “do-
pamine homeostasis”. This required paradigm shift may consist of 
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many beneficial modalities including but not limited to: exercise 
[46], pro-dopamine regulation [47], nutrition [48], cognitive be-
havioral therapy [49], hedonic hot spot targets brain [50], rTMRS 
[51], deep brain stimulation [52], diet53, genetic edits [54], genetic 
guided therapeutics [55], epigenetic repair [56], amongst others 

related to augmented resting state functional connectivity [57]. 

We believe that “out of the box thinking” in the face the of the 
continued drug/behavioral addiction crisis during the current vi-
ral pandemic, and innovative systems biological approaches of any 
one singular, therapeutic target site may indeed become a frontline 
defense to prevent and or treat RDS like behavior. Nutrigenomics 
may assist the millions of people of getting out of a “hypodopami-
nergic ditch” [58]. 
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